AWS Data Pipeline 101: A Comprehensive Guide


AWS Data Pipeline

AWS Data Pipeline is a web service that lets you process and moves data at regular intervals between AWS computing and storage services, as well as on-premises data sources. It enables you to develop fault-tolerant, repeatable, and highly available complex data processing workloads.

This article will give you a comprehensive guide to AWS Data Pipeline. You will get to know about the architecture and key features of the AWS Data Pipeline. You will also explore the Features, Pricing, Advantages, Limitations, and many more in further sections. Let’s get started.

What is Data Pipeline?

A data pipeline moves data from one location (source) to a destination (such as a data warehouse). In the process, the data is transformed and optimized to obtain a state that can be used and analyzed to develop business ideas. Essentially, a data pipeline is a stage involved in aggregating, organizing, and moving data. Modern data pipelines automate many manual steps in transforming and optimizing continuous data loads.

What is AWS Data Pipeline?

AWS Data Pipeline: Logo | Hevo Data
Image Source

AWS Data Pipeline offers a web service that helps users define automated workflows for the movement and transformation of data. In other words, it offers data extraction, load, and transformation as a service.

Users need not create an elaborate ETL or ELT platform to use their data. With proper AWS training, they can exploit the predefined configurations and templates provided by Amazon. Most operations performed by the Data pipeline involve using computing power other than the source and target database, and this power comes from Amazon’s computing services like EMR.

Why understanding the AWS Data Pipeline is important?

Data is growing at a massive rate. Data processing, storage, management, and migration are more complex and time-consuming than ever before. The following factors make data processing difficult:

  • Mostly raw or unprocessed bulk data is generated, leading to unstructured data types.
  • Converting data to a compatible format is a tedious task.
  • There are many saving options available, including data storage or cloud storage such as Amazon S3 or Amazon Relational Database Service (RDS).

AWS Data pipeline is one of the solutions for the ETL tool. It supports multiple Amazon cloud storage.

What are the Benefits of AWS Data Pipeline?

The benefit of an ETL platform stems from the fact that data in a typical organization is scattered across multiple sources in multiple formats. To make any use of this data to improve business, it needs to be cleaned and transformed into actionable forms.

This is not a one-time process and must be repeated periodically as the data in these sources grows with every business activity.

Traditionally organizations used to build complex internal on-premise networks to accomplish this activity. This meant a lot of effort was spent developing and maintaining this platform, distracting the workforce from creating value from this data.

This is where services like Data pipeline comes in, offering all the convenience of a complete ETL platform as a web service.

What are the Key Features of the AWS Data Pipeline?

AWS Data Pipeline has gained wide popularity in the market. Some of the key features of AWS Data Pipeline include:

  • As mentioned earlier, the AWS Data pipeline allows automation workflows between different sources and targets. It supports most of the AWS sources as well as typical on-premise sources like JDBC-based databases.
  • Data pipelines allow users to schedule these operations or chain them based on the success or failure of upstream tasks. 
  • It supports comprehensive transformation operations through different service activities like HiveActivity, PigActivity, and SQLActivity. Option for a custom code-based transformation is supported through HadoopActivity with its ability to run user-supplied code in an EMR cluster or on-premise cluster.
  • Customers can choose to start an EMR cluster only when required using the EMR activity and then use a HadoopActivity to run their processing or transformation jobs.
  • It allows the customers to make use of their on-premise system for data sources or transformation, provided these compute resources are set up with data pipeline task runners.
  • It provides a very flexible pricing regime with the user only having to pay for the time when the compute resources are being used and a flat fee for periodic tasks.
  • It provides a very simple interface that enables customers to set up complex workflows with just a few clicks.

What are the Core Concepts and Architectures of AWS Data Pipeline?

Conceptually AWS data pipeline is organized into a pipeline definition that consists of the following components.

  1. Task runners: Task runners are installed in the computing machines which will process the extraction, transformation, and load activities. Task runners are responsible for executing these processes as per the schedule defined in the pipeline definition.
  2. Data nodes: Data nodes represent the type of data and the location from which it can be accessed by the pipelines. This includes both input and output data elements.
  3. Activities: Activities represent the actual work that is being performed on the data. The data pipeline supports multiple activities that can be chosen according to the workloads. Typical activities are listed below.
    1. CopyActivitiy: Used when data needs to be copied from one data node to another.
    2. EmrActivity: Activity for starting and running an EMR cluster.
    3. HiveActivity: Runs a hive query.
    4. HiveCopyActivity: Runs a pig script in the AWS EMR cluster.
    5. RedshiftCOpyActivity: Runs a copy operation to the Redshift table.
    6. ShellCommandActivity: For executing a Linux shell command or a script.
    7. SQLActivity: Runs an SQL command on supported databases. The data pipeline supports JDBC databases, AWS RDS databases, and Redshift.
  4. Preconditions: These are pipeline components with conditional statements which must be true for the next pipeline activity to start. These are used for chaining pipeline activities based on custom logic.
  5. Resources: Resources for an AWS Data pipeline are usually an EMR or an EC2 instance.
  6. Actions: Data pipelines can be configured to execute certain actions when specific conditions meet or certain events occur. These are typically notifications or termination requests.
AWS Data pipeline:  architecture | Hevo Data
Image Source

What are the Pros and Cons of AWS Data Pipeline?

AWS Data pipeline unleashes the full power of an ETL platform in the form of a web service with a very comprehensive control panel. That said, it is not without its cons. The below section details the pros and cons of the service from an ETL developer’s point of view.


  1. Simple to use control panel with predefined templates for most AWS databases.
  2. Ability to spawn clusters and resources only when needed.
  3. Ability to schedule jobs only on specific time periods.
  4. Full security suite protecting data while in motion and rest. AWS’s access control mechanism allows fine-grained control over who can use what.
  5. Fault-tolerant architecture – Relieves users of all the activities related to system stability and recovery.


  1. The data pipeline is designed for AWS services or, in other words, AWS world and hence integrates well with all the AWS components. AWS Data Pipeline is not the right option if you need to bring data from different third-party services.
  2. Working with data pipelines and on-premise resources can be overwhelming, with multiple installations and configurations to be managed on the compute resources.
  3. The data pipeline’s way of representing preconditions and branching logic can seem complex to a beginner, and to be honest, there are other tools out there that help to accomplish complex chains more easily. An example is a framework like Airflow. 

What are the Top Alternatives to AWS Data Pipeline?

1) Hevo

As mentioned above, the AWS data pipeline is not without its cons and can make easier jobs seem complex if there are components outside the AWS universe. In such cases, your needs may be better served by a fully managed data integration platform like Hevo. 

AWS Data pipeline: #1 Alternative Hevo | Hevo Data
Image Source
Simplify ETL Using Hevo’s No-code Data Pipeline

Hevo Data helps you directly transfer data from 150+ data sources to Data Warehouses or a destination of your choice in a completely hassle-free & automated manner. Hevo is fully managed and completely automates the process of not only loading data from your desired source but also enriching the data and transforming it into an analysis-ready form without having to write a single line of code. Its fault-tolerant architecture ensures that the data is handled in a secure, consistent manner with zero data loss.

Hevo takes care of all your data preprocessing needs required to set up the integration and lets you focus on key business activities and draw a much more powerful insight on how to generate more leads, retain customers, and take your business to new heights of profitability. It provides a consistent & reliable solution to manage data in real-time and always have analysis-ready data in your desired destination.

Get Started with Hevo for Free

Check out what makes Hevo amazing:

  • Secure: Hevo has a fault-tolerant architecture that ensures that the data is handled in a secure, consistent manner with zero data loss.
  • Schema Management: Hevo takes away the tedious task of schema management & automatically detects the schema of incoming data and maps it to the destination schema.
  • Minimal Learning: Hevo, with its simple and interactive UI, is extremely simple for new customers to work on and perform operations.
  • Hevo Is Built To Scale: As the number of sources and your data volume grows, Hevo scales horizontally, handling millions of records per minute with very little latency.
  • Incremental Data Load: Hevo allows the transfer of data that has been modified in real-time. This ensures efficient utilization of bandwidth on both ends.
  • Live Support: The Hevo team is available round the clock to extend exceptional support to its customers through chat, email, and support calls.
  • Live Monitoring: Hevo allows you to monitor the data flow and check where your data is at a particular point in time.
Sign up here for a 14-Day Free Trial!

2) AWS Glue

AWS Glue is a fully-managed Extract, Transform, and Load (ETL) service that makes it easy and cost-effective to categorize your data, clean, enrich, and move it between reliably disparate data stores and data streams. AWS Glue is a tool in the Big Data Tools category of a technology stack.

3)Apache Airflow

Apache Airflow is a workflow engine that makes it easy to plan and run complex data pipelines. This ensures that each job in the data pipeline runs in the correct order and each job gets the resources it needs. It provides an amazing user interface to monitor and troubleshoot problems.

4) Apache NiFi

Apache NiFi is open-source software for automating and managing the flow of data between source and destination. A robust and reliable system for data processing and distribution. Provides a web user interface for creating, monitoring, and managing data flows. You have a dataflow process that you can easily customize and modify to change data at runtime.

What is the Pricing of AWS Data Pipeline?

The data pipeline is priced in terms of activities and preconditions that are configured in the console and their frequency of executions. AWS classifies the frequency of executions as low in the case of activities that are executed up to once per day.

All activities that are executed more than once per day are high-frequency activities. The low-frequency one on AWS is charged at $.6 per month and the one on on-premise systems is charged at $1.5 per month. High-frequency activities start at $1 per month and go up to $2.5 per month for on-premise systems.

All the resources used in the pipeline activity like EC2 instances, EMR clusters, Redshift databases, etc are charged at the normal rates and come above the pipeline pricing. Above mentioned charges are only for the pipeline features.

How to Work with AWS Data Pipelines?

Working with the AWS pipeline is all about pipeline definitions. Let us look into setting up a simple AWS pipeline for copying data from RDS to Redshift.

You need to have an AWS account before you can proceed with working the AWS data pipeline. This can be done based on predefined templates from AWS, saving us quite a lot of configuration effort.

  • From the AWS console, go to the data pipeline and select ‘Create new pipeline’. This will take you to the pipeline configuration screen.
AWS data pipeline: Create the pipeline | Hevo Data
Image Source: Self
  • Enter the name and description of the pipeline and choose a template. Here we choose ‘incremental copy of MySQL RDS to Redshift’. There is also another option to configure the pipeline using the Architect application for more advanced use cases.
AWS data pipeline: Choose a template | Hevo Data
Image Source: Self
  • After selecting the template, it is time to fill in the parameters for the data nodes we are using in this case. Fill up the parameters for the RDS MYSQL instance.
AWS data pipeline: Fill parameters | Hevo Data
Image Source: Self
  • Configure the Redshift connection parameters.
AWS data pipeline: Connection parameters | Hevo Data
Image Source: Self
  • Select the schedule for the activity to run. You can either select a schedule or enable a one-time run on activation.
AWS data pipeline: Select the schedule for the activity to run | Hevo Data
Image Source: Self
  • The next step is to enable the logging configuration. We suggest you enable this for any kind of pipeline activity and point the login directory to an S3 location. This can be very useful for troubleshooting activities later. Click ‘Activate’ and you are good to go.

How to Delete AWS Data Pipeline?

Deleting your AWS data pipeline will delete your pipeline definition and its associated objects. Let’s look at the steps to delete your AWS data pipeline:

  1. Click on the List Pipelines and then select the pipeline which you want to delete.
  2. Click Actions and select Delete.
  3. Confirm your delete operation by clicking on Delete again.


If your ETL involves AWS ecosystem components only, then the AWS Data pipeline is an excellent choice for implementing ETL workflows without having to maintain an ETL infrastructure on your own. That said, it is not without its quirks, and we have attempted to explain the less elegant bits in the above sections.

If your use spans beyond AWS components or if you are looking to implement a fuss-free ETL, it may be better to use robust data pipeline platforms such as Hevo Data that provide much more flexibility along with an enterprise-grade data migration experience.

Visit our Website to Explore Hevo

Businesses can use automated platforms like Hevo Data to set the integration and handle the ETL process. It helps you directly transfer data from 150+ sources of your choice to a Data Warehouse, Business Intelligence tools, or any other desired destination in a fully automated and secure manner without having to write any code and will provide you a hassle-free experience.

Want to take Hevo for a spin? Sign Up for a 14-day free trial and experience the feature-rich Hevo suite first hand. You can also have a look at the unbeatable Hevo Pricing that will help you choose the right plan for your business needs.

Share your experience of using AWS data pipelines in the comment section below.

Vivek Sinha
Director of Product Management, Hevo Data

Vivek Sinha has more than 10 years of experience in real-time analytics and cloud-native technologies. With a focus on Apache Pinot, he was a driving force in shaping innovation and defensible differentiators, including enhanced query processing, data mutability support, and cost-effective tiered storage solutions at Hevo. He also demonstrates a passion for exploring and implementing innovative trends within the dynamic data industry landscape.

All your customer data in one place.