Spatial and Temporal Data Mining: Key Differences Simplified 101

on data mining, Data Mining, Spatial Data Mining, Spatial Data Science, Temporal Data Mining, Tutorials • May 31st, 2022 • Write for Hevo

Spatial and Temporal Data Mining_FI

Spatial means space, whereas temporal means time. Spatial Data Mining refers to the process of extraction of knowledge, spatial relationships, and exciting patterns that are not explicitly stored in a spatial database. On the other hand, Temporal Data Mining refers to the extraction of knowledge about the occurrence of an event, whether they follow random, cyclic, seasonal variation, etc.

In this article, you will gain information about Spatial and Temporal Data Mining. You will also gain a holistic understanding of Spatial data, its types, temporal data mining, and the difference between Spatial and Temporal Data Mining.

Table of Contents

What is Spatial Data?

The data that provides information about a specific geographical area or location is known as Spatial Data. It provides the information that helps identify the location of the feature or the boundary of Earth. Moreover, spatial data can be processed using GIS (Geographical Information System) or Image processing packages.

Types of Spatial Data

` The different types of Spatial Data are as follows:

1) Feature Data

Feature data follows the vector data model. It represents the entity of the real world, i.e., roads, trees, buildings, etc. This information can be visually represented in the form of a point, line, or polygon.

2) Coverage Data

Coverage data follows the raster data model. Coverage Data contains the mapping of continuous data in space and is represented as a range of values in a satellite image, a digital surface model, aerial photographs, etc. The visual representation of coverage data is in the form of a grid or triangulated irregular network.

Replicate Data in Minutes Using Hevo’s No-Code Data Pipeline

Hevo Data, a Fully-managed Data Pipeline platform, can help you automate, simplify & enrich your data replication process in a few clicks. With Hevo’s wide variety of connectors and blazing-fast Data Pipelines, you can extract & load data from 100+ Data Sources straight into your Data Warehouse or any Databases. To further streamline and prepare your data for analysis, you can process and enrich raw granular data using Hevo’s robust & built-in Transformation Layer without writing a single line of code!

GET STARTED WITH HEVO FOR FREE

Hevo is the fastest, easiest, and most reliable data replication platform that will save your engineering bandwidth and time multifold. Try our 14-day full access free trial today to experience an entirely automated hassle-free Data Replication!

What is Spatial Data Mining?

Spatial Data Mining is the process of discovering interesting and useful patterns, spatial relationships, which weren’t earlier stored in spatial databases. In spatial data, mining analysts use geographical or spatial information to produce business intelligence or other results. Challenges involved in spatial data mining include identifying patterns or finding relevant objects to the research project.

The general tools used for Spatial data Mining are Clementine See5/C5.0 and Enterprise Miner. These tools are preferable for analyzing scientific and engineering data, astronomical data, multimedia data, genomic data, and web data.

Spatial data must contain:

  • Latitude and longitude information.
  • UTM easting or northing.
  • Other coordinates denote a point’s location in space, which helps in identifying a location.

Apart from this information, it may contain the different types of an attribute that helps identify a geographical location and its characteristics.

Spatial and Temporal Data Mining: Spatial Data Mining| Hevo Data
Image Source

What is Temporal Data?

Temporal Data is the data that represent a state in time. It is basically a temporary data that is valid for a prescribed period of time. Data is collected at a particular time to analyze weather patterns, monitor traffics, study demographics, etc.

Temporal data is useful for analyzing the change that is happening over a period of time. This analysis is later used for identifying the potential cause of the changes and thus come up with solutions.

What is Temporal Data Mining?

Temporal Data Mining is the process of extracting useful information from the pool of temporal data. It is concerned with analyzing temporal data to extract and find the temporal patterns and regularities in the datasets. 

The various tasks of Temporal Data Mining are as follows: 

  • Data Characterization and Comparison
  • Cluster Analysis
  • Classification
  • Association rules
  • Prediction and Trend Analysis
  • Pattern Analysis

The main objective of Temporal Data Mining is to find the temporal patterns, trends, and relations within the data and extract meaningful information from the data to visualize how the data trend has changed over a course of time.

Temporal Data Mining includes the processing of time-series data, and sequences of data to determine and compute the values of the same attributes over multiple time points.

What Makes Hevo’s ETL Process Best-In-Class?

Providing a high-quality ETL solution can be a difficult task if you have a large volume of data. Hevo’s automated, No-code platform empowers you with everything you need to have for a smooth data replication experience.

Check out what makes Hevo amazing:

  • Fully Managed: Hevo requires no management and maintenance as it is a fully automated platform.
  • Data Transformation: Hevo provides a simple interface to perfect, modify, and enrich the data you want to transfer.
  • Faster Insight Generation: Hevo offers near real-time data replication so you have access to real-time insight generation and faster decision making. 
  • Schema Management: Hevo can automatically detect the schema of the incoming data and map it to the destination schema.
  • Scalable Infrastructure: Hevo has in-built integrations for 100+ sources (with 40+ free sources) that can help you scale your data infrastructure as required.
  • Live Support: Hevo team is available round the clock to extend exceptional support to its customers through chat, email, and support calls.
Sign up here for a 14-day free trial!

Spatial and Temporal Data Mining: Differences

Spatial and Temporal Data Mining: Differences| Hevo Data
Image Source

The difference between Spatial and Temporal Data Mining can be based on the following characteristics.

1) Spatial and Temporal Data Mining: Concept

Spatial Data Mining is the extraction of information and relationships from geographical data stored in a spatial database.

Temporal Data Mining is the extraction of information from the temporal data to identify the pattern of the data. 

2) Spatial and Temporal Data Mining: Type of Data

Spatial Data Mining mainly deals with the Spatial data i.e., location, geo-referenced data, etc.

Temporal Data Mining usually deals with Temporal content from the data pool.

3) Spatial and Temporal Data Mining: Base Logic

Spatial Data Mining needs space information within the data. For example, any data with location coordinates can be treated as a Spatial Data set.

Temporal Data Mining needs time information. For example, any data set containing the events over time can be treated as temporal data.

4) Spatial and Temporal Data Mining: Principle

Spatial Data Mining is based on rules like Association rules, Discriminant rules, characteristic rules, etc.

Temporal Data Mining is based on finding patterns in the data by clustering, association, prediction, and data comparison.

5) Spatial and Temporal Data Mining: Examples

The basic example of Spatial Data Mining is determining the hotspot of any event, unusual locations, etc.

Suppose you want to log the information about the places you have visited in the past year, showing your travel habits and other spending patterns. To do this, you can capture the coordinates of all the places you have visited in the past year and list other attributes such as the place’s name, the purpose of visit, expenditure cost, and so on. After that, you can create a shapefile in Quantum GIS or any other software to visualize the data. You can generate a heatmap that will depict your places more often and analyze your visiting pattern or spending habits.

The basic usage of Temporal Data Mining is to understand the weather changes over a period of time or in comparing the climate changes on the basis of today’s weather vs. ten years back the same day.

As we know Temporal Data Mining is the analysis of time-series data to capture the behavior of data against a period of time. A classic example of Temporal Data Mining is the analysis of stock ticks. You can get the overall history of a particular stock and how it behaves in the past. Based on the past behavior a predictive algorithm can predict the upcoming ups and downs of that stock. 

A Summarised Comparison of Spatial and Temporal Data Mining

Basis for ComparisonSpatial Data Mining Temporal Data Mining
ConceptExtraction of information & relationships from geographical data stored in a spatial database.Extraction of information from the temporal data to identify the pattern of the data. 
Type of DataSpatial data i.e., location, geo-referenced data, etc.Temporal content from the data pool.
Base LogicIt needs space information within the data such as location coordinates, etc. It needs time information.
PrincipleBased on rules like Association rules, Discriminant rules, characteristic rules, etc.Based on finding patterns in the data by clustering, association, prediction, and data comparison.
ExamplesDetermining the hotspot of any eventUnderstanding the weather changes over a period of time

Conclusion

In this article, you have learned about Spatial and Temporal Data Mining. This article also provided information on Spatial data, its types, temporal data mining, and the difference between Spatial and Temporal Data Mining.

Hevo Data, a No-code Data Pipeline provides you with a consistent and reliable solution to manage data transfer between a variety of sources and a wide variety of Desired Destinations with a few clicks.

Visit our Website to Explore Hevo

Hevo Data, with its strong integration with 100+ Data Sources (including 40+ Free Sources) allows you to not only export data from your desired data sources & load it to the destination of your choice but also transform & enrich your data to make it analysis-ready. Hevo also allows the integration data from non-native sources using Hevo’s in-built REST API & Webhooks Connector. You can then focus on your key business needs and perform insightful analysis using BI tools. 

Want to give Hevo a try? Sign Up for a 14-day free trial and experience the feature-rich Hevo suite first hand. You may also have a look at the amazing price, which will assist you in selecting the best plan for your requirements.

Share your experience of understanding Spatial and Temporal Data Mining in the comment section below! We would love to hear your thoughts.

No-code Data Pipeline for your Data Warehouse