Summary IconQuick Takeaway

Below are quick summaries of the top 5 data aggregation tools. Click the links to jump to detailed sections:

  • Hevo Data: No-code, real-time pipeline for 150+ sources with built-in transformations.
  • Talend: Open-source ETL tool with powerful data profiling and cleansing features.
  • Alteryx: User-friendly, drag-and-drop analytics platform ideal for self-service data aggregation.
  • Informatica: Enterprise-grade, AI-powered data aggregation with strong governance and scalability.
  • Supermetrics: Best for marketers—pulls ad, web, and campaign data from top marketing platforms.

    In a world overflowing with data, businesses face the challenge of turning scattered information into meaningful insights. That’s where data aggregation companies come into play. These companies simplify the process by collecting, consolidating, and organizing data from various sources into a single, usable format.

    From improving decision-making to driving business growth, aggregation is at the heart of modern enterprises. In this blog, look at some of the best companies and data aggregation tools, showcasing how they help businesses discover the true potential of their data. Ready to find the perfect partner for your data needs? Let’s get started!

    10 Best Data Aggregation Companies And Tools

    Data aggregation is one of the fastest-growing sectors in the world today. Due to the huge amount of data that companies generate, many data aggregation companies have started. These companies differ based on coverage, pricing, focus, and developer friendliness. When looking for data aggregation companies, consider all the above factors. The following are the best data aggregation companies and data aggregation tools:

    1) Hevo Data

    Hevo logo

    Hevo aggregates information by providing a no-code platform that builds real-time data pipelines. It specializes in connecting to over 150 different sources (like databases and SaaS apps) and moving that data into a central destination, such as a data warehouse, simplifying consolidation for users without deep technical skills.

    Key Features

    • No-code data pipeline setup.
    • Real-time data replication.
    • Support for schema evolution.
    • Advanced observability for troubleshooting.
    ProsCons
    With Hevo, you get a world-class fault-tolerant architecture that scales with zero data loss and low latency. Advanced customizations require some technical adjustment for edge-case scenarios.
    Bring real-time visibility into your ELT with alerts and activity logs Feature depth for advanced governance still evolving for enterprise users.
    Hevo automatically maps the source schema to the destination warehouse so that you don’t have to deal with schema errors.Real-time sync frequency may depend on your subscription tier.
    Discover peace with round-the-clock live chat within the platform.User interface updates may occasionally introduce small learning curves.

      2) Talend

      talend logo

      Talend is a powerful data integration and aggregation tool that combines big data processing with data quality. Talend approaches data aggregation through a powerful, developer-focused ETL framework. It allows users to build custom workflows to extract data from diverse systems, then perform robust data cleansing and transformation before loading it into a target system, with a strong emphasis on data quality.

      Key Features

      • Pre-built connectors for databases, applications, and APIs.
      • Support for ETL (Extract, Transform, Load) and ELT workflows.
      • Data profiling and cleansing tools for improved data quality.
      ProsCons
      Comprehensive real-time monitoring capabilities.Requires technical expertise for complex tasks.
      The open-source version allows flexibility.It can be resource-intensive for large datasets.
      The enterprise version supports advanced workflows.UI can feel outdated compared to competitors.

      3) Alteryx

      alteryx logo

      Alteryx provides data aggregation through its self-service analytics platform. It empowers business analysts to aggregate data themselves using a visual, drag-and-drop workflow to connect to sources, blend them together, and prepare the final aggregated dataset for direct use in analytics.

      Key Features

      • Pre-configured connectors to simplify data aggregation.
      • Predictive analytics tools integrated into workflows.
      • Collaboration tools for teams working on shared data projects.
      ProsCons
      Simple drag-and-drop interface for beginners.High licensing costs for small teams.
      Rich library of pre-built workflows.Limited real-time data processing capabilities.
      Seamless integration with popular BI tools.Advanced features require additional training.

      4) Informatica

      Informatica Logo

      Informatica offers enterprise-grade data aggregation designed for large, complex organizations. Its platform is built to handle massive volumes of data and uses AI to automate pipeline creation, while wrapping the entire process in strong data governance to ensure compliance and quality at scale.

      Key Features

      • AI-driven metadata analysis for smarter data handling.
      • Cloud-native architecture with hybrid deployment options.
      • Data governance and compliance support for regulatory needs.
      ProsCons
      Scalable to handle large enterprise workloads.Expensive for small businesses.
      Strong support for regulatory compliance.Complex implementation process.
      Excellent for cloud and hybrid data management.The interface can feel overwhelming for beginners.

      5) Supermetrics

      supermetrics logo

      Supermetrics is a specialized data aggregation tool focused exclusively on marketing and advertising. It uses pre-built connectors to pull performance metrics (like clicks, spend, and conversions) from platforms like Google Ads and Facebook into a single spreadsheet or BI tool for unified reporting.

      Key Features

      • Pre-built connectors for marketing and advertising platforms.
      • Automated data pipelines for scheduled refreshes.
      • Compatible with Google Sheets, Excel, and data warehouses.
      ProsCons
      Easy to use for marketers without technical skills.Limited to marketing-related data sources.
      Customizable and reporting-ready data outputs.It is not ideal for aggregating data from non-marketing platforms.
      Reliable data refresh options to keep reports updated.Higher costs for advanced plans.

      6) MX

      mx logo

      MX: MX is a financial data aggregator that specializes in securely connecting to banks and financial institutions, primarily in North America. It aggregates user-permissioned data like transaction histories and account balances to power services like personal finance management (PFM) and digital banking apps.

      Key Features

      • MX has partnerships with 1,800+ financial institutions and 43 top digital banking providers in the U.S. and Canada.
      • Offers data aggregation, visualization, personal finance management, and analytics.
      • Routes traffic to 48,000 connections, ensuring stable access to financial data.
      • Works with multiple data aggregation companies to enhance data coverage.
      ProsCons
      Strong partnerships with leading financial institutionsLimited presence outside North America
      Comprehensive financial data visualization toolsData privacy concerns due to extensive aggregation
      Reliable and stable data connectivityCompetitive market with similar service providers

      7) Finicity

      fincity logo

      Finicity: Finicity functions as a financial data aggregation API with a strong focus on credit decisioning and verification. It aggregates the financial data needed for lenders to verify assets and income, making it a key tool for automating loan applications and underwriting.

      Key Features

      • Finicity has connected 15,000 financial institutions in North America.
      • 95% coverage of US deposit accounts and wealth management.
      • Focuses on credit decisions and financial data aggregation.
      • Acts as a credit reporting agency for specific products.
      • Partnered with FICO and Experian to develop UltraFICO for better credit accessibility.
      ProsCons
      High coverage of financial institutions in North AmericaLimited global presence
      Strong focus on credit decisions and financial inclusionDependency on partnerships for credit scoring tools
      Collaborations with FICO and Experian strengthen credibilityPrimarily useful for credit-related use cases

      8) Fiserv / CashEdge

      fiserv

      Fiserv/CashEdge: Fiserv (which acquired CashEdge) is a long-standing financial data aggregator primarily serving established financial institutions and advisors. It aggregates client account data from various sources to provide a holistic view of a person’s finances, which is crucial for wealth management and advisory services.

      Key Features

      • Fiserv acquired CashEdge in 2011 to enhance data aggregation capabilities.
      • Provides data aggregation solutions tailored for financial advisors and general audiences.
      • Offers personal financial management (PFM) solutions.
      • Powers account aggregation services for financial institutions.
      ProsCons
      Well-established brand with strong industry experienceLimited to financial advisory and PFM use cases
      Reliable data aggregation infrastructureHigh costs for premium services
      Trusted by major financial institutionsAcquisition history may impact service continuity

      9) Mobius Services

      mobius

      Mobius Services: Mobius provides custom data aggregation and enrichment as a managed service. Unlike a self-serve tool, Mobius works with businesses to build bespoke solutions for collecting and consolidating data, often enhancing it with additional information to make it more valuable.

      Key Features

      • Mobius specializes in data enrichment, digital marketing, research, and consulting.
      • Active presence in India, the UK, and the USA.
      • Focuses on industries like finance, retail, travel, oil and gas, and real estate.
      • Provides customized data aggregation and analysis services.
      ProsCons
      Strong expertise in data enrichment and consultingLess recognized brand compared to bigger players
      Serves multiple industries beyond financeLimited public client list
      Global presence in key marketsMay not offer as many automation features as competitors

      10) Yodlee

      Yodlee: Yodlee is a veteran and one of the most established financial data aggregators. It provides the core technology to link to user-permissioned bank, credit card, investment, and loan accounts. Its platform aggregates this wide array of financial data, which developers use to build thousands of consumer-facing fintech applications.

      Key Features

      • Yodlee was founded in 1999 as one of the pioneers in data aggregation.
      • Acquired by Envestnet in 2015.
      • Extensive financial data coverage across institutions.
      • Offers an incubator and launchpad for fintech innovation.
      • Supports various financial services like lending, wealth management, and personal finance.
      ProsCons
      Established brand with decades of experienceRegulatory scrutiny over data privacy policies
      Comprehensive data aggregation coverageSome fintech startups prefer newer alternatives
      Wide range of financial tools and servicesThis may involve higher costs for premium services

      Here is a comparison for the top 4 tools:

      Hevo LogoTry Hevo for Freetalend logoalteryx logoinformatica logo
      Reviewsg2 rating
      4.5 (250+ reviews)
      g2 rating
      4.3 (100+ reviews)
      g2 rating
      4.6 (630+ reviews)
      g2 rating
      4.4 (80+ reviews)
      Pricing
      Usage-based pricing
      Capacity-based pricing
      Subscription based pricing
      consumption-based pricing
      Free Plangreen-tick
      red-cross
      red-cross
      green-tick
      Free Trialgreen-tick
      14-day free trial
      red-cross
      green-tick
      30 days free trial
      green-tick
      30 day free trial
      Platform Type
      No-code, real-time data integration platform
      Data integration & aggregation with ETL/ELT
      Self-service data analytics & automation
      Enterprise end-to-end data management
      Key Workflow
      Real-time ELT
      ETL & ELT
      Analytics automation & BI prep
      Enterprise ETL/ELT & Data Management
      Target Users
      Data engineers, analysts
      Technical data teams
      Business analysts, data scientists
      Large enterprises, IT teams
      Pre-built Connectors
      150+ sources (DBs, apps, APIs)
      Databases, applications, APIs
      Various apps & databases
      Extensive enterprise systems
      Real-time Sync
      ✅ Core feature
      ✅ In Enterprise version
      ❌ Limited capabilities
      ✅ Core feature
      UI & Usability
      No-code, user-friendly
      Technical, can feel outdated
      Drag-and-drop, beginner-friendly
      Complex, powerful, can be overwhelming
      Primary Strength
      Simplicity and speed for real-time pipelines
      Flexibility (open-source) & data quality tools
      Self-service analytics and workflow automation
      Scalability, governance, & compliance
      Key Weakness
      Less suited for complex transformations
      Resource-intensive; requires expertise
      High cost; limited real-time processing
      Expensive & complex to implement
      Governance Support
      Basic (logs & alerts)
      Advanced (in Enterprise version)
      Minimal
      Strong (core feature)
      Pricing Model
      Transparent plans
      Open-source (free) + quote-based enterprise plans
      High licensing cost
      Quote-based enterprise pricing
      Support Model
      24/7 in-app live chat
      Community & paid enterprise support
      Training-focused & paid support
      Premium enterprise support

      Examples of Data Aggregation

      • Analyzing User Behavior: Websites aggregate data like page visits, time spent on pages, and clicked links to understand user navigation patterns. This helps identify popular content and areas needing improvement, enhancing user experience.
      • Tracking Sales Performance: E-commerce sites use aggregated data on product views, add-to-cart actions, and purchases to monitor sales trends, identify bestsellers, and optimize inventory strategies.
      • Improving Marketing Campaigns: Aggregated data from website traffic, email clicks, and ad interactions helps businesses evaluate campaign performance and refine strategies to target their audience effectively.
      • Monitoring Website Performance: Data on server uptime, page load times, and error rates can be aggregated to ensure smooth site operation and improve technical performance.

      What is Data Aggregation?

      Data aggregation refers to the process of collecting and presenting data in a summarized format for analytics to achieve business objectives. The process generally takes place in 3 steps, listed below:

      • Data Collection: This includes collecting data from different data sources. All the business data exists in multiple Databases in heterogeneous formats and needs Data Pipelines to load data to common storage.
      • Data Processing: After collecting data, the data aggregation companies use tools to clean and transform data into an analysis-ready form. 
      • Data Visualization: Once the data is ready for analysis, reporting tools can use this data to generate immersive reports. Moreover, users can use this data to visualize it and generate actionable insights.

      Data aggregation plays an important role in data warehousing as it helps businesses make decisions based on huge amounts of data. It gives companies the ability to forecast future trends, and it facilitates predictive modeling.

      What is a Data Aggregator?

      A data aggregator is a firm or service that collects data from several sources, processes it, and aggregates the information into one single dataset that is easier to access and analyze for businesses, researchers, or individuals from multiple places in a single format; essentially, they “aggregate” data by collecting it from various sources and placing it together in a usable form.

      Examples of data aggregators

      • Market research data aggregators: Firms aggregating market research data from multiple sources to offer businesses comprehensive insights.
      • Data aggregators for finance data: Platforms that gather financial information from multiple bank accounts to give an all-in-one view of a user’s finances in one application.
      • Business listing aggregators: Companies gather business information from multiple online directories and present them uniformly to increase online visibility.

      Limitations of Data Aggregation Companies

      Although the above companies will help you aggregate the data that your enterprise wants, you will experience the following challenges:

      • You will have to wait sometime for your data to be analyzed. This may delay the data analysis and decision-making process for your enterprise. 
      • You’ll give third-party access to your data. This may violate your company’s privacy, especially when dealing with sensitive data. 
      • They don’t offer tools for collecting and aggregating data in real-time, which means your enterprise may lack up-to-date data for analysis and decision-making. 

      For a comprehensive look at effective data consolidation, explore the key techniques and challenges businesses face.

      Want to take Hevo for a spin?

      Experience the feature-rich Hevo suite firsthand.
      Sign Up for a 14-day Free Trial
      Want to take Hevo for a spin?

      Conclusion

      In this article, you explored the concept of data aggregation and its importance for enterprises. You also discovered some of the leading companies offering data aggregation solutions along with the best data aggregation tools. Implementing the right tools can help streamline your business processes, saving time and resources.

      If you’re looking for an efficient solution to manage your data needs, Hevo Data is a great option. It simplifies the processes of data collection, transformation, and integration, making it easier to connect multiple data sources and destinations seamlessly. Sign up for a 14-day free trial and make your data transfer easy! Also, check out our unbeatable pricing for the best plan that fits your needs.

      FAQs

      What are data aggregation companies?

      Data aggregation companies collect, organize, and compile data from multiple sources into a unified format. These companies provide aggregated data to businesses for analysis, marketing, or decision-making purposes.

      What is an example of an aggregation business?

      An example of an aggregation business is Yelp, which collects user-generated reviews and business information from various local businesses.

      What are the risks of data aggregation?

      The risks of data aggregation include data privacy breaches, inaccurate data collection, unauthorized access, and potential misuse of sensitive information. 

      How do I choose the right data aggregation tool for my business?

      It depends on your data sources, integration needs, scalability, real-time capabilities, and whether you need pre-built connectors or custom pipelines. Also consider ease of use, pricing, and support.

      What’s the difference between data aggregation and data integration?

      Data aggregation focuses on collecting and summarizing data for reporting or analysis. Data integration involves syncing and combining data from various systems into a consistent, usable format—often feeding into aggregation.

      Can data aggregation tools handle real-time data?

      Yes, many modern tools support real-time data aggregation. However, capabilities vary—check if the platform offers streaming connectors or real-time sync features before choosing.

      Nicholas Samuel
      Technical Content Writer, Hevo Data

      Nicholas Samuel is a technical writing specialist with a passion for data, having more than 14+ years of experience in the field. With his skills in data analysis, data visualization, and business intelligence, he has delivered over 200 blogs. In his early years as a systems software developer at Airtel Kenya, he developed applications, using Java, Android platform, and web applications with PHP. He also performed Oracle database backups, recovery operations, and performance tuning. Nicholas was also involved in projects that demanded in-depth knowledge of Unix system administration, specifically with HP-UX servers. Through his writing, he intends to share the hands-on experience he gained to make the lives of data practitioners better.